The molecular basis of the expansive substrate specificity of the antibiotic resistance enzyme aminoglycoside acetyltransferase-6'-aminoglycoside phosphotransferase-2". The role of ASP-99 as an active site base important for acetyl transfer.
نویسندگان
چکیده
The most frequent determinant of aminoglycoside antibiotic resistance in Gram-positive bacterial pathogens is a bifunctional enzyme, aminoglycoside acetyltransferase-6'-aminoglycoside phosphotransferase-2" (AAC(6')- aminoglycoside phosphotransferase-2", capable of modifying a wide selection of clinically relevant antibiotics through its acetyltransferase and kinase activities. The aminoglycoside acetyltransferase domain of the enzyme, AAC(6')-Ie, is the only member of the large AAC(6') subclass known to modify fortimicin A and catalyze O-acetylation. We have demonstrated through solvent isotope, pH, and site-directed mutagenesis effects that Asp-99 is responsible for the distinct abilities of AAC(6')-Ie. Moreover, we have demonstrated that small planar molecules such as 1-(bromomethyl)phenanthrene can inactivate the enzyme through covalent modification of this residue. Thus, Asp-99 acts as an active site base in the molecular mechanism of AAC(6')-Ie. The prominent role of this residue in aminoglycoside modification can be exploited as an anchoring site for the development of compounds capable of reversing antibiotic resistance in vivo.
منابع مشابه
Aminoglycoside resistance mediated by the bifunctional enzyme 6'-N-aminoglycoside acetyltransferase-2"-O-aminoglycoside phosphotransferase.
The expression of the bifunctional aminoglycoside inactivating enzyme 6'-N-aminoglycoside acetyltransferase-2"-O-aminoglycoside phosphotransferase is the most important mechanism of high-level aminoglycoside resistance in Staphylococcus and Enterococcus. The enzyme is unique because it presents two different aminoglycoside-modifying activities located in different regions of the molecule. The g...
متن کاملStructural and Molecular Basis for Resistance to Aminoglycoside Antibiotics by the Adenylyltransferase ANT(2″)-Ia
The aminoglycosides are highly effective broad-spectrum antimicrobial agents. However, their efficacy is diminished due to enzyme-mediated covalent modification, which reduces affinity of the drug for the target ribosome. One of the most prevalent aminoglycoside resistance enzymes in Gram-negative pathogens is the adenylyltransferase ANT(2″)-Ia, which confers resistance to gentamicin, tobramyci...
متن کاملNovel aminoglycoside 2''-phosphotransferase identified in a gram-negative pathogen.
Aminoglycoside 2″-phosphotransferases are the major aminoglycoside-modifying enzymes in clinical isolates of enterococci and staphylococci. We describe a novel aminoglycoside 2″-phosphotransferase from the Gram-negative pathogen Campylobacter jejuni, which shares 78% amino acid sequence identity with the APH(2″)-Ia domain of the bifunctional aminoglycoside-modifying enzyme aminoglycoside (6') a...
متن کاملFrequency of 16S rRNA Methylase and Aminoglycoside-Modifying Enzyme Genes among Clinical Isolates of Acinetobacter baumannii in Iran
Background & objective: Multidrug-resistant Acinetobacter baumannii (MDR-AB) is an important nosocomial pathogen which is associated with significant morbidity and mortality, particularly in high-risk populations. Aminoglycoside-modifying enzymes (AMEs) and 16S ribosomal RNA (16S rRNA) methylation are two important mechanisms of resistance to ...
متن کاملBroad-spectrum peptide inhibitors of aminoglycoside antibiotic resistance enzymes.
The action of aminoglycoside antibiotics is inhibited by chemical modification catalyzed by aminoglycoside inactivating enzymes, which bind these cationic saccharides with active site pockets that contain a preponderance of negatively charged residues. In this study, it was observed that several cationic antimicrobial peptides, representing different structural classes, could serve as inhibitor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 15 شماره
صفحات -
تاریخ انتشار 2003